

Classifying spaces for families for systolic and small cancellation groups

Tomasz Prytuła

University of Copenhagen

Introduction

We construct a finite-dimensional model for $\underline{\underline{E}}G$ where G is a systolic group. Our approach parallels the one used for $\text{CAT}(0)$ groups, yet some exotic properties of systolic complexes are exploited in order to give better dimension bounds.

We also construct low-dimensional models for $\underline{E}G$ and $\underline{\underline{E}}G$ for graphical small cancellation groups.

This is joint work with Damian Osajda.

Classifying spaces for families

Let G be a group and \mathcal{F} a family of its subgroups. A *model for classifying space of G for the family \mathcal{F}* is a G -CW-complex $E_{\mathcal{F}}G$ such that for every subgroup H of G the fixed point set

$$(E_{\mathcal{F}}G)^H = \begin{cases} \text{contractible} & \text{if } H \in \mathcal{F}, \\ \text{empty} & \text{otherwise.} \end{cases}$$

Families we consider:

- 1. \mathcal{FIN} : the family of all finite subgroups of G .
- 2. \mathcal{VCY} : the family of all virtually cyclic subgroups of G .

Let $\underline{E}G := E_{\mathcal{FIN}}G$ and $\underline{\underline{E}}G := E_{\mathcal{VCY}}G$.

An importance of $\underline{\underline{E}}G$ comes from the *Farrell-Jones conjecture*: the ‘assembly map’

$$\mathcal{H}_*^G(\underline{\underline{E}}G, K_R) \rightarrow K_*(R[G])$$

is an isomorphism.

To compute the left-hand side we need simple models for $\underline{\underline{E}}G$.

Systolic complexes

A simply connected simplicial complex X is *systolic* if it is flag and if every cycle in X of length less than 6 has a diagonal ([Che00], [JŚ06]).

Features of systolic complexes:

- 1 defined by an easily checkable, combinatorial condition,
- 2 simplicial analogues of non-positively curved metric spaces,
- 3 lead to a rich class of groups having exotic properties.

Theorem (Osajda-P., 2015)

Let a group G act properly on an n -dimensional systolic complex X .

Then there exists a G -CW-model for $\underline{\underline{E}}G$ of dimension

$$\dim \underline{\underline{E}}G = \begin{cases} n+1 & \text{if } n \leq 3, \\ n & \text{if } n \geq 4. \end{cases}$$

Method

We use a push-out construction of Lück and Weiermann [LW12]. The idea is to glue cells equivariantly to the model for $\underline{E}G$, in order to create contractible fixed point sets for infinite virtually cyclic subgroups.

- The systolic complex X is a model for $\underline{E}G$ ([CO15]).
- The cells we glue to X are related to hyperbolic isometries of X .

Tools

- 1 hereditary asphericity properties of systolic complexes
- 2 hyperbolic isometries and their minimal displacement sets
- 3 quasi-isometric rigidity results

Hyperbolic isometries

An isometry h of a systolic complex X having no fixed points is called *hyperbolic*. Let

$$\text{Min}(h) = \text{span}\{x \in X^{(0)} \mid d(x, h(x)) \text{ is minimal}\}.$$

The following theorem is the crucial step in our construction.

Theorem (Osajda-P., 2015)

Let h be a hyperbolic isometry of a systolic complex X . Then there is a quasi-isometry

$$c: T \times \mathbb{R} \rightarrow \text{Min}(h)$$

where T is a simplicial tree.

Graphical small cancellation

Let $X^{(1)}$ be a graph and consider a family of graphs $\{\Gamma_i\}_{i \in I}$ together with combinatorial maps $\phi_i: \Gamma_i \rightarrow X^{(1)}$. A *graphical 2-complex* is a “coned-off” space

$$X = X^{(1)} \cup_{(\phi_i)} \bigcup_i \text{cone } \Gamma_i$$

formed by gluing to $X^{(1)}$ a topological cone along each graph Γ_i .

- A *piece* in X is a path $P \rightarrow X^{(1)}$ that is contained in the images of 2 distinct graphs Γ_i and Γ_j .
- A graphical 2-complex X satisfies *C(6) small cancellation condition* if no cycle $C \rightarrow X^{(1)}$ is a concatenation of less than 6 pieces.

Systolic duals of $C(6)$ complexes

Let X be a simply connected graphical 2-complex. Consider its covering by the cones $\{\text{cone } \Gamma_i\}_{i \in I}$. Define the simplicial complex

$$\hat{X} = \mathcal{N}(\{\text{cone } \Gamma_i\}_{i \in I})$$

as the *nerve* of this covering. We call \hat{X} the *dual* of X .

We show that if X satisfies $C(6)$ condition, then \hat{X} is systolic. This is a generalization of a theorem of D. Wise [Wis] for classical small cancellation complexes. As a corollary we obtain the following.

Theorem (Osajda-P., 2015)

Let a group G act properly on a $C(6)$ graphical small cancellation complex X . Then:

- The complex X is a 2-dimensional model for $\underline{E}G$.
- There exists a G -CW-model for $\underline{\underline{E}}G$ of dimension at most 3.

References & Contact Information

- [Che00] V. Chepoi, *Graphs of some CAT(0) complexes*, Adv. in Appl. Math. **24** (2000), no. 2, 125–179.
- [CO15] V. Chepoi and D. Osajda, *Dismantlability of weakly systolic complexes and applications*, Trans. Amer. Math. Soc. **367** (2015), no. 2, 1247–1272.
- [JŚ06] T. Januszkiewicz and J. Świątkowski, *Simplicial nonpositive curvature*, Publ. Math. Inst. Hautes Études Sci. **104** (2006), 1–85.
- [LW12] W. Lück and M. Weiermann, *On the classifying space of the family of virtually cyclic subgroups*, Pure Appl. Math. Q. **8** (2012), no. 2, 497–555.
- [Wis] D. Wise, *Systolic complexes and their fundamental groups*, unpublished manuscript.

t.prytula@math.ku.dk, tomaszprytula.com